سلمانپور، آوا؛ و برهمن، مسعود (1401). کاربرد ممریستور به عنوان سیناپس در سلولهای عصبی Integrate and fire و هاجکین هاکسلی. انجمن مهندسی برق و الکترونیک ایران، 20 (1)، 9-14.
References
Bouzouita, M., Pathak, S., Zayer, F., Belgacem, H., & Tzouvadaki, I. (2025). Advanced memristive architectures based on nanomaterials for biomedical applications: a mini review.
Frontiers in Nanotechnology,
7.
https://doi.org/10.3389/fnano.2025.1558743
Chakraverty, M., & Ramakrishnan, V. N. (2020). A Qualitative Study of Materials and Fabrication Methodologies for Two Terminal Memristive Systems.
Materials Today: Proceedings,
22, 1628–1637.
https://doi.org/10.1016/j.matpr.2020.02.160
Choi, Y., Jeong, S., Jeong, H., Han, S., Ko, J., Yu, S. E., Xu, Z., Chae, M. S., Son, M., Meng, Y., Xu, S., Kang, J.-H., Mun, S., & Bae, S. H. (2025). Advanced AI computing enabled by 2D material-based neuromorphic devices.
npj Unconventional Computing,
2(1).
https://doi.org/10.1038/s44335-025-00023-7
Gou, K., Li, Y., Song, H., Lu, R., & Jiang, J. (2024). Optimization strategy of the emerging memristors: From material preparation to device applications.
iScience,
27(12), 111327.
https://doi.org/10.1016/j.isci.2024.111327
Hoch, F. L., Wang, Q., Lim, K. G., & Loke, D. K. (2025). Multifunctional Organic Materials, Devices, and Mechanisms for Neuroscience, Neuromorphic Computing, and Bioelectronics.
Nano-Micro Letters,
17(1), 251.
https://doi.org/10.1007/s40820-025-01756-7
Huang, T., Wang, Y., Jin, Z., Liu, H., Wang, K., Chee, T. L., Shi, Y., & Yan, S. (2025). A Review of Nanowire Devices Applied in Simulating Neuromorphic Computing.
Nanomaterials (Basel),
15(10).
https://doi.org/10.3390/nano15100724
Ivanov, D., Chezhegov, A., Kiselev, M., Grunin, A., & Larionov, D. (2022). Neuromorphic artificial intelligence systems.
Front Neurosci,
16, 959626.
https://doi.org/10.3389/fnins.2022.959626
Meng, J., Song, J., Fang, Y., Wang, T., Zhu, H., Ji, L., Sun, Q. Q., Zhang, D. W., & Chen, L. (2024). Ionic Diffusive Nanomemristors with Dendritic Competition and Cooperation Functions for Ultralow Voltage Neuromorphic Computing.
ACS Nano,
18(12), 9150–9159.
https://doi.org/10.1021/acsnano.4c00424
Mihail C. Roco, W. S. B. (2002). Converging Technologies for Improving Human Performance.
Nordmann, A. (2004). Converging Technologies – Shaping the Future of European Societies.
Prakash, C., Gupta, L. R., Mehta, A., Vasudev, H., Tominov, R., Korman, E., Fedotov, A., Smirnov, V., & Kesari, K. K. (2023). Computing of neuromorphic materials: an emerging approach for bioengineering solutions.
Materials Advances,
4(23), 5882–5919.
https://doi.org/10.1039/d3ma00449j
Salmanpour, A., & Berahman, M. (2023). Memristor Bridge Synapse Application for Integrate and Fire and Hodgkin-Huxley Neuron Cell.
Journal of Iranian Association of Electrical and Electronics Engineers,
20(1), 9–14.
https://doi.org/10.52547/jiaeee.20.1.9 (in persian)
Sumner, R. L., Spriggs, M. J., Muthukumaraswamy, S. D., & Kirk, I. J. (2020). The role of Hebbian learning in human perception: a methodological and theoretical review of the human Visual Long-Term Potentiation paradigm.
Neuroscience & Biobehavioral Reviews,
115, 220–237.
https://doi.org/10.1016/j.neubiorev.2020.03.013
Teixeira, H., Dias, C., Silva, A. V., & Ventura, J. (2024). Advances on MXene-Based Memristors for Neuromorphic Computing: A Review on Synthesis, Mechanisms, and Future Directions.
ACS Nano,
18(33), 21685–21713.
https://doi.org/10.1021/acsnano.4c03264
Thakkar, P., Gosai, J., Gogoi, H. J., & Solanki, A. (2024). From fundamentals to frontiers: a review of memristor mechanisms, modeling and emerging applications.
Journal of Materials Chemistry C,
12(5), 1583–1608.
https://doi.org/10.1039/d3tc03692h
Wang, X., Zhu, Y., Zhou, Z., Chen, X., & Jia, X. (2025). Memristor-Based Spiking Neuromorphic Systems Toward Brain-Inspired Perception and Computing.
Nanomaterials (Basel),
15(14).
https://doi.org/10.3390/nano15141130
Weilenmann, C., Ziogas, A. N., Zellweger, T., Portner, K., Mladenovic, M., Kaniselvan, M., Moraitis, T., Luisier, M., & Emboras, A. (2024). Single neuromorphic memristor closely emulates multiple synaptic mechanisms for energy efficient neural networks.
Nature Communications,
15(1), 6898.
https://doi.org/10.1038/s41467-024-51093-3
William Sims Bainbridge, M. C. R. (2006). Managing Nano-Bio-Info-Cogno Innovations. Springer.
Xia, Z., Sun, X., Wang, Z., Meng, J., Jin, B., & Wang, T. (2025). Low-Power Memristor for Neuromorphic Computing: From Materials to Applications.
Nano-Micro Letters,
17(1), 217.
https://doi.org/10.1007/s40820-025-01705-4
Xiao, Y., Gao, C., Jin, J., Sun, W., Wang, B., Bao, Y., Liu, C., Huang, W., Zeng, H., & Yu, Y. (2024). Recent Progress in Neuromorphic Computing from Memristive Devices to Neuromorphic Chips.
Advanced Devices & Instrumentation,
5.
https://doi.org/10.34133/adi.0044
Xiao, Y., Jiang, B., Zhang, Z., Ke, S., Jin, Y., Wen, X., & Ye, C. (2023). A review of memristor: material and structure design, device performance, applications and prospects.
Science and Technology of Advanced Materials,
24(1), 2162323.
https://doi.org/10.1080/14686996.2022.2162323
Xie, P., Li, D., Yip, S., & Ho, J. C. (2024). Emerging optoelectronic artificial synapses and memristors based on low-dimensional nanomaterials.
Applied Physics Reviews,
11(1).
https://doi.org/10.1063/5.0173547
Zhang, Q., Yu, H., Barbiero, M., Wang, B., & Gu, M. (2019). Artificial neural networks enabled by nanophotonics.
Light: Science & Applications,
8(1), 42.
https://doi.org/10.1038/s41377-019-0151-0